Format of challenges

The decodingchallenge team

August 14, 2019

Contents

1	The Syndrome Decoding challenge	2
2	The Low-weight Codeword challenge	2
3	The Goppa-McEliece Syndrome Decoding challenge	3
4	The Quasi-cyclic Syndrome Decoding challenge	4

1 The Syndrome Decoding challenge

Notation. Formally, a Syndrome Decoding¹ challenge consists in a tuple $(n, w, \mathbf{H}, \mathbf{s})$, where:

- $-n \ge 2$ is an integer.
- $w = d_{GV}(n, n/2)$ is the target weight.
- $-\mathbf{H} \in \mathbb{F}_q^{n/2 \times n}$ is the parity-check matrix. We assume that **H** is structured as follows:

$$\mathbf{H} = [\mathbf{I}_{n/2} | \mathbf{M}^{\top}],$$

where $\mathbf{I}_{n/2}$ denotes the identity matrix of size n/2, and $\mathbf{M}^{\top} \in \mathbb{F}_2^{n/2 \times n/2}$ is the transpose of a random matrix \mathbf{M} . For each $1 \le i \le n/2$, let us denote by $\mathbf{m}_i \in \mathbb{F}_2^{n/2}$ the i-th row of \mathbf{M} , so that:

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & 0 & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 & \mathbf{m}_1^\top & \mathbf{m}_2^\top & \cdots & \cdots & \mathbf{m}_{n/2}^\top \\ \vdots & & \ddots & \ddots & 0 & \vdots & \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & & & & \vdots \end{pmatrix}.$$

– $\mathbf{s} \in \mathbb{F}_2^{n/2}$ is a random syndrome.

The goal of the challenge is to produce a word **e** of Hamming weight $\leq w$ such that $\mathbf{H}\mathbf{e}^{\top} = \mathbf{s}^{\top}$.

Format of files. Each file is named SD_<n>_<seed>, where

- <n> is the length n;
- <seed> is the random seed used in order to generate the challenge.

It is structured as follows:

- line 1: a comment
- line 2: the length *n*
- line 3: a comment
- line 4: the seed
- line 5: a comment
- line 6: the target weight w
- line 7: a comment
- line 8: the 1st row \mathbf{m}_1 of \mathbf{M} , given as a string of length n/2; the j-st character is either 0 or 1, and corresponds to the j-th bit of \mathbf{m}_1
- line 9: the 2nd row \mathbf{m}_2 of \mathbf{M}
- ...
- line 7 + n/2: the last row $\mathbf{m}_{n/2}$ of \mathbf{M}
- line 8 + n/2: a comment
- line 9 + n/2: the syndrome **s**, given as a binary string of length n/2.

2 The Low-weight Codeword challenge

Notation. Formally, a Low-weight Codeword² challenge consists in a tuple (n, \mathbf{H}) , where:

¹https://decodingchallenge.inria.fr/syndrome/

²https://decodingchallenge.inria.fr/low-weight/

- $-n \ge 2$ is an integer.
- $-\mathbf{H} \in \mathbb{F}_q^{n/2 \times n}$ is the parity-check matrix. We assume that **H** is structured as follows:

$$\mathbf{H} = [\mathbf{I}_{n/2} | \mathbf{M}^{\top}],$$

where $\mathbf{I}_{n/2}$ denotes the identity matrix of size n/2, and $\mathbf{M}^{\top} \in \mathbb{F}_2^{n/2 \times n/2}$ is the transpose of a random matrix **M**. For each $1 \le i \le n/2$, let us denote by $\mathbf{m}_i \in \mathbb{F}_2^{n/2}$ the *i*-th row of M, so that:

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & 0 & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 & \mathbf{m}_1^\top & \mathbf{m}_2^\top & \cdots & \cdots & \mathbf{m}_{n/2}^\top \\ \vdots & & \ddots & \ddots & 0 & \vdots & \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & & & & \vdots \end{pmatrix}.$$

The goal of the challenge is to produce a non-zero codeword e (i.e. a binary vector satisfying $He^{T} = 0$) whose Hamming weight is lowest as possible.

Format of files. Each file is named LW_<n>_<seed>, where

- <n> is the length n;
- <seed> is the random seed used in order to generate the challenge.

It is structured as follows:

- line 1: a comment
- line 2: the length *n*
- line 3: a comment
- line 4: the seed
- line 5: a comment
- line 6: the 1st row \mathbf{m}_1 of \mathbf{M} , given as a string of length n/2; the j-st character is either 0 or 1, and corresponds to the *j*-th bit of \mathbf{m}_1
- line 7: the 2nd row m_2 of M
- line 5 + n/2: the last row $\mathbf{m}_{n/2}$ of \mathbf{M} .

The Goppa-McEliece Syndrome Decoding challenge

Notation. Formally, a syndrome decoding challenge in the Goppa-McEliece setting³ consists in a tuple $(n, w, \mathbf{H}, \mathbf{s})$, where:

- $-n \ge 2$ is an integer.
- $-k = \lceil 0.8n \rceil$ (in the specification of the Classic McEliece cryptosystem, $R \approx 0.7968$).
- $-w=\lceil \frac{n}{\lceil 5\log_2 n \rceil} \rceil$ is the target weight. $-\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$ is the parity-check matrix. We assume that \mathbf{H} is structured as follows:

$$\mathbf{H} = [\mathbf{I}_{n-k} | \mathbf{M}^{\top}],$$

where \mathbf{I}_{n-k} denotes the identity matrix of size n-k, and $\mathbf{M}^{\top} \in \mathbb{F}_2^{(n-k)\times k}$ is the transpose of a random matrix \mathbf{M} . For each $1 \leq i \leq k$, let us denote by $\mathbf{m}_i \in \mathbb{F}_2^{n-k}$ the i-th row of

³https://decodingchallenge.inria.fr/goppa/

M, so that:

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & \dots & \vdots & \vdots & & & \vdots \\ 0 & \ddots & 0 & \mathbf{m}_1^\top & \mathbf{m}_2^\top & \dots & \dots & \mathbf{m}_k^\top \\ \vdots & 0 & 1 & \vdots & \vdots & & & \vdots \end{pmatrix}.$$

- $\mathbf{s} \in \mathbb{F}_2^{n-k}$ is a syndrome produced by a random error \mathbf{e} of Hamming weight w (*i.e* $\mathbf{H}\mathbf{e}^{\top} = \mathbf{s}^{\top}$).

The goal of the challenge is to produce a word \mathbf{e}' of Hamming weight $\leq w$ such that $\mathbf{H}\mathbf{e}'^{\top} = \mathbf{s}^{\top}$.

Format of files. Each file is named Goppa_<n>, where

- <n> is the length n,

and has been built by a trusted institution which erased the secret value **e**. You can choose your favorite provider on the right banner of the website.

Each file is structured as follows:

- line 1: a comment
- line 2: the length *n*
- line 3: a comment
- line 4: the dimension $k = \lceil 0.8n \rceil$
- line 5: a comment
- line 6: the target weight *w*
- line 7: a comment
- line 8: the 1st row \mathbf{m}_1 of \mathbf{M} , given as a string of length n-k; the j-st character is either 0 or 1, and corresponds to the j-th bit of \mathbf{m}_1
- line 9: the 2nd row \mathbf{m}_2 of \mathbf{M}
- _
- line 7 + k: the last row \mathbf{m}_k of \mathbf{M}
- line 8 + k: a comment
- line 9 + k: the syndrome **s**, given as a binary string of length n k.

4 The Quasi-cyclic Syndrome Decoding challenge

Notation. Formally, a syndrome decoding challenge in the Quasi-cyclic setting⁴ consists in a tuple $(n, w, \mathbf{H}, \mathbf{s})$, where:

- $-w \ge 2$ is an integer corresponding to the target.
- $n = w^2$.
- $-k = \lceil n/2 \rceil.$
- $-\mathbf{H} \in \mathbb{F}_q^{n-k \times n}$ is the parity-check matrix. We assume that \mathbf{H} is structured as follows:

$$\mathbf{H} = [\mathbf{I}_{n-k}|\mathbf{M}^{\top}],$$

where \mathbf{I}_{n-k} denotes the identity matrix of size n-k, and $\mathbf{M}^{\top} \in \mathbb{F}_2^{(n-k)\times k}$ is the transpose of a random circulant matrix \mathbf{M} . Precisely, the matrix \mathbf{M}^{\top} is determined by n/2 bits

⁴https://decodingchallenge.inria.fr/q-c/

 $(m_1, \ldots, m_{n/2})$, and has the following form:

Let us define $\mathbf{h} = (m_1, m_{n/2}, m_{n/2-1}, \dots, m_2) \in \mathbb{F}_2^{n/2}$ to be the first column of \mathbf{M}^{\top} , and denote by $\sigma^i(\mathbf{h})$ its i-th shift $(m_{1+i}, m_{n/2+i}, \dots, m_{2+i})$, where indices are taken modulo n/2 and lie in $\{1, \dots, n/2\}$. Then \mathbf{H} can actually be written:

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & 0 & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 & \mathbf{h}^{\top} & \sigma(\mathbf{h})^{\top} & \sigma^{2}(\mathbf{h})^{\top} & \cdots & \sigma^{n/2-1}(\mathbf{h})^{\top} \\ \vdots & & \ddots & \ddots & 0 & \vdots & \vdots & & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & & \vdots \end{pmatrix}.$$

- $\mathbf{s} \in \mathbb{F}_2^{n/2}$ is a syndrome produced by a random error \mathbf{e} of Hamming weight w (*i.e* $\mathbf{H}\mathbf{e}^{\top} = \mathbf{s}^{\top}$).

The goal of the challenge is to produce a word \mathbf{e}' of Hamming weight $\leq w$ such that $\mathbf{H}\mathbf{e}'^{\top} = \mathbf{s}^{\top}$.

Format of files. Each file is named QC_<n>, where

- <n> is the length n,

and has been built by a trusted institution which erased the secret value **e**. You can choose your favorite provider on the right banner of the website.

Each file is structured as follows:

- line 1: a comment
- line 2: the length *n*
- line 3: a comment
- line 4: the target weight *w*
- line 5: a comment
- line 6: the vector \mathbf{h} , given as a binary string of length n/2
- line 7: a comment
- line 8: the syndrome s, given as a binary string of length n/2.